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Abstract. An efficient computational algorithm to price financial derivatives is presented. It is based on a
path integral formulation of the pricing problem. It is shown how the path integral approach can be worked
out in order to obtain fast and accurate predictions for the value of a large class of options, including
those with path-dependent and early exercise features. As examples, the application of the method to
European and American options in the Black-Scholes model is illustrated. The results of the algorithm are
compared with those obtained with the standard procedures known in the literature and found to be in
good agreement.

PACS. 02.50.Ey Stochastic processes – 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin,
etc.) – 89.75.-k Complex systems

1 Introduction

The standard theory of option pricing is based on the re-
sults found in 1973 by Black and Scholes [1] and, indepen-
dently, Merton [2]. Their pioneering work starts from the
basic assumption that the asset prices follow the dynamics
of a particular stochastic process, so that they have a log-
normal distribution [3,4]. In the case of an efficient market
with no arbitrage possibilities, no dividends and constant
volatilities, they found that the price of each financial
derivative is ruled by an ordinary partial differential equa-
tion, known as the Black-Scholes-Merton (BSM) formula.
In the most simple case of a so-called European option, the
BSM equation can be explicitly solved to obtain an analyt-
ical formula for the price of the option. When we consider
other financial derivatives, which are commonly traded in
real markets and allow anticipated exercise and/or depend
on the history of the underlying asset, the BSM formula
fails to give an analytical result. Appropriate numerical
procedures have been developed in the literature to price
exotic financial derivatives with path-dependent features,
as discussed in references [3,5]. The aim of this work is to
provide a contribution to the problem of efficient option
pricing in financial analysis, showing how it is possible to
use path integral methods to develop a fast and precise
algorithm for the evaluation of option prices.

The path integral method, which traces back to the
original work of Wiener and Kac in stochastic calcu-
lus [6,7] and of Feynman in quantum mechanics [8], is
today widely employed in chemistry and physics, and very
recently in finance too [9–13], because it gives the possi-
bility of applying powerful analytical and numerical tech-
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niques [14]. Following recent studies on the application
of the path integral approach to the financial market as
appeared in the econophysics literature (see Ref. [13] for
a comprehensive list of references), this paper is devoted
to present an original, efficient path integral algorithm
to price financial derivatives, including those with path-
dependent and early exercise features, and to compare the
results with those obtained with the standard procedures
known in the literature. The paper is a short version of ref-
erence [15], to which the reader is referred for more details
and further numerical results.

The outline of the paper is as follows. In Section 2 the
path integral approach to option pricing is briefly reviewed
and analytically developed in order to obtain an efficient
procedure for the calculation of the transition probability
associated to a given stochastic model of asset evolution.
Computational details to obtain fast predictions for path-
dependent options are also described, and a particularly
simple and very quick semi-analytical approximation for
the price of an American option is derived, by exploit-
ing the possibility of anticipated exercise for any time be-
fore the expiration date. A sample of numerical results
for European and American options in the BSM model
is given in Section 3, together with comparisons with re-
sults known in the literature. Conclusions and prospects
are drawn in Section 4.

2 The path integral method

The path integral method is an integral formulation of the
dynamics of a stochastic process. It is a suitable frame-
work for the calculation of the transition probabilities as-
sociated to a given stochastic process, which is seen as the
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convolution of an infinite sequence of infinitesimal short-
time steps [9,14].

For definiteness, the stochastic model here assumed
for the time evolution of the asset price S is the standard
BSM geometric Brownian motion, driven by the stochastic
differential equation [3,4]

dS = µSdt + σSdw, (1)

which, by means of the Itô lemma, can be cast in the form
of an arithmetic Brownian motion for the logarithm of S

d(ln S) = Adt + σdw, (2)

where σ is the volatility, A
.=

(
µ − σ2/2

)
, µ is the drift

parameter and w is the realization of a Wiener process
such that, for a time interval dt, it satisfies the statistical
properties 〈dw〉 = 0 and 〈dw2〉 = dt. For the problem of
option pricing, the path integral method can be success-
fully employed for the explicit calculation of the expecta-
tion values of the quantities of financial interest, given by
integrals of the form

E[Oi|Si−1] =
∫

dzip(zi|zi−1)Oi(ezi). (3)

In equation (3) z = ln S and p(zi|zi−1)
.= p(zi, ti|

zi−1, ti−1) 1 denotes the conditional transition probabil-
ity to have at the time ti a price zi = lnSi under the
hypothesis that the price was zi−1 = ln Si−1 at a previous
time ti−1 < ti. E[Oi|Si−1] is the conditional expectation
value of some functional Oi of the stochastic process. For
example, for an European call option at the maturity T
the quantity of interest will be max {ST −X, 0}, X being
the strike price.

As discussed in the literature [3,5,10,13], the compu-
tational complexity associated to this calculation is gen-
erally great: in the case of exotic options, with path-
dependent and early exercise features, integrals of the
type (3) can not be analytically solved. As a consequence,
we demand two things from a path integral framework: a
very quick way to estimate the transition probability as-
sociated to a given stochastic model and a clever choice
of the integration points with which evaluate the inte-
grals (3).

2.1 Transition probability

The probability distribution function related to a stochas-
tic differential equation verifies the so-called Chapman-
Kolmogorov equation [4]

p(z′′|z′) =
∫

dzp(z′′|z)p(z|z′), (4)

which states that the probability (density) of a transition
from the value z′ (at time t′) to the value z′′ (at time t′′) is

1 In the expressions for the conditional transition probabili-
ties we omit the times to simplify the notation.

the “summation” over all the possible intermediate values
z of the probability of separate and consequent transitions
z′ → z, z → z′′. As a consequence, if we consider a finite-
time interval [t′, t′′] and we apply a time slicing, by con-
sidering n + 1 subintervals of length ∆t

.= (t′′ − t′)/n + 1,
we can write, by iteration of equation (4)

p(z′′|z′) =
∫ +∞

−∞
· · ·

∫ +∞

−∞
dz1 · · ·dznp(z′′|zn) · · · p(z1|z′),

which, thanks to the formula valid for the transition prob-
ability zi → zf associated to the process (2) for a time
interval ∆t [4,9],

p(zf |zi) =
1√

2π∆tσ2
exp

{
− [zf − (zi + A∆t)]2

2σ2, ∆t

}
(5)

can be rewritten as∫ +∞

−∞
· · ·

∫ +∞

−∞
dz1 · · ·dzn

1√
(2πσ2∆t)n+1

× exp

{
− 1

2σ2∆t

n+1∑
k=1

[zk − (zk−1 + A∆t)]2
}
· (6)

In the limit n → ∞, ∆t → 0 such that (n + 1)∆t =
(t′′ − t′), the previous expression, as explicitly shown in
reference [9], exhibits a Lagrangian structure and it is pos-
sible to express the transition probability in the path in-
tegral formalism as a convolution of the form [9]

p(z′′|z′) =
∫
C
D[σ−1z̃] × exp

{
−

∫ t′′

t′
L(z̃(τ), ˙̃z(τ); τ)dτ

}
,

where L is the Lagrangian

L(z̃(τ), ˙̃z(τ); τ) =
1

2σ2

[ ˙̃z(τ) − A
]2

,

and the integral is performed (with functional mea-
sure D[·]) over the paths z̃(·) belonging to C, i.e. all con-
tinuous paths with constraints z̃(t′) ≡ z′, z̃(t′′) ≡ z′′. As
carefully discussed in reference [9], a path integral is well
defined only if both a continuous formal expression and
a discretization rule are given. As done in many applica-
tions, the Itô prescription is adopted in the present work.

A first, naive evaluation of the transition probability
can be performed via Monte Carlo (MC) simulation, by
writing equation (6) as

p(z′′|z′) =
∫ +∞

−∞
· · ·

∫ +∞

−∞

n∏
i

dgi
1√

2πσ2∆t

× exp
{
− 1

2σ2∆t
[z′′ − (zn + A∆t)]2

}
, (7)

in terms of the variables gi defined by the relation

dgk
.=

dzk√
2πσ2∆t

exp
{
− 1

2σ2∆t
[zk − (zk−1 + A∆t)]2

}
,

(8)
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and extracting each gi from a Gaussian distribution of
mean zk−1 +A∆t and variance σ2∆t. However, as we will
see, this method requires a large number of calls to obtain
a good precision. This is due to the fact that each gi is
related to the previous gi−1, so that this implementation of
the path integral approach can be seen to be equivalent to
a naive MC simulation of random walks, with no variance
reduction.

By means of appropriate manipulations [14] of the in-
tegrand entering equation (6), it is possible, as shown in
the following, to obtain a path integral formula for the
transition probability which will contain a factorized in-
tegral with a constant kernel and therefore allows a MC
implementation with consequent variance reduction. We
will refer to this second implementation of the method as
path integral with importance sampling.

If we define yk
.= zk − kA∆t, k = 1, . . . , n, we can

express the transition probability as

∫ +∞

−∞
· · ·

∫ +∞

−∞
dy1 · · · dyn

1√
(2πσ2∆t)n+1

× exp

{
− 1

2σ2∆t

n+1∑
k=1

[yk − yk−1]2
}

, (9)

in order to get rid of the contribution of the drift param-
eter. Now let us extract from the argument of the expo-
nential function a quadratic form

n+1∑
k=1

[yk−yk−1]2 = y2
0−2y1y0+y2

1+y2
1−2y1y2+. . .+y2

n+1 =

ytMy + [y2
0 − 2y1y0 + y2

n+1 − 2ynyn+1], (10)

by introducing the n-dimensional array y and the n × n
matrix M defined as

y =




y1

y2

...

...
yn


 , M =




2 −1 0 · · · · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
0 · · · −1 2 −1 0
0 · · · · · · −1 2 −1
0 · · · · · · · · · −1 2


 ,

(11)

where M is a real, symmetric, non singular and tridiagonal
matrix. In terms of the eigenvalues mi of the matrix M ,
the contribution in equation (10) can be written as

ytMy = wtOtMOw = wtMdw =
n∑

i=1

miw
2
i , (12)

by introducing the orthogonal matrix O which diagonal-
izes M , with wi = Oijyj . Because of the orthogonal-
ity of O, the Jacobian of the transformation yk → wk

equals 1, so that
∏n

i=1 dwi =
∏n

i=1 dyi. Thanks to equa-
tions (11-12), and after some algebra, it is possible to ar-
rive, as shown in detail in reference [15], at the following

expression for the finite-time probability distribution

p(z′′|z′) =
∫ +∞

−∞
· · ·

∫ +∞

−∞

n∏
i=1

dhi
1√

2πσ2∆t det(M)

× exp

{
− 1

2σ2∆t

[
y2
0 + y2

n+1

+
n∑

i=1

(y0O1i + yn+1Oni)2

mi

]}
,

(13)

where we have introduced new variables hi which obey the
relation

dhi
.=

√
mi

2πσ2∆t

× exp

{
− mi

2σ2∆t

[
wi − (y0O1i + yn+1Oni)

mi

]2
}

dwi.

(14)

Actually, the probability distribution function, as given
by equation (13), is an integral whose kernel is a constant
function (with respect to the integration variables) and
which can be factorized into the n integrals

∫ +∞

−∞
dhi exp

{
− 1

2σ2∆t

(y0O1i + yn+1Oni)2

mi

}
, (15)

given in terms of the hi, which are Gaussian variables that
can be extracted from a normal distribution with mean
(y001i + yn+1Oni)2/mi and variance σ2∆t/mi. Differently
to the first, naive implementation of the path integral,
now each hi is no longer dependent on the previous hi−1,
and importance sampling over the paths is automatically
accounted for. The results of the two realizations of the
path integral method here discussed will be compared in
Section 3.

2.2 Integration points

Thanks to the method illustrated in Section 2.1, a pow-
erful tool to compute the transition probability in a path
integral framework is available and it can be employed if
we need to value a generic option with maturity T and
with possibility of anticipated exercise at times ti = i∆t
(n∆t

.= T ). As a consequence of this time slicing, one must
numerically evaluate n − 1 mean values of the type (3),
in order to check at any time ti, and for any value of the
stock price, whether early exercise is more convenient with
respect to holding the option for a future time. To keep
under control the computational complexity and the time
of execution, it is mandatory to limit as far as possible the
number of points for the integral evaluation. This means
that we would like to have a linear growth of the number
of integration points with the time.
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Let us suppose to evaluate each mean value

E[Oi|Si−1] =
∫

dzip(zi|zi−1)Oi(ezi),

with p integration points, i.e. considering only p fixed val-
ues for zi. To this end, we can create a grid of possible
prices, according to the dynamics of the stochastic process

z(t + ∆t)−z(t)=lnS(t + ∆t) − ln S(t) = A∆t + εσ
√

∆t,
(16)

where ε is a random variable following a standardized nor-
mal distribution with mean 0 and variance 1.

Starting from z0, we can thus evaluate the expectation
value E[O1|S0] with p = 2m + 1, m ∈ N values of z1

centered2 around the mean value E[z1] = z0 + A∆t and
which differ from each other of a quantity of the order of
σ
√

∆t

zj
1

.= z0 + A∆t + jσ
√

∆t, j = −m, . . . , +m.

Going on like this, we can evaluate each expectation value
E[O2|zj

1] obtained from each one of the z1’s created above
with p values for z2 centered around the mean value

E[z2|zj
1] = zj

1 + A∆t = z0 + 2A∆t + jσ
√

∆t.

Iterating the procedure until the maturity, we create a
deterministic grid of points such that, at a given time ti,
there are (p − 1)i + 1 values of zi, in agreement with the
request of linear growth.

This procedure of selection of the integration points,
together with the calculation of the transition probabil-
ity previously described, is the basis of our path integral
simulation of the price of a generic option.

2.3 The limit of continuum and American options

In the case of an American option, the possibility of ex-
ercise at any time up to the expiration date allows to de-
velop, within the path integral formalism, a specific al-
gorithm, which, as shown in the following, is precise and
very quick.

Given the time slicing considered in Section 2.2, the
case of American options requires the limit ∆t → 0 which,
putting σ → 0, leads to a delta-like transition probability

p(z, t + ∆t|zt, t) ≈ δ(z − zt − A∆t).

This means that, apart from volatility effects, the price zi

at time ti will have a value remarkably close to the ex-
pected value z̄

.= zi−1 + A∆t, given by the drift growth.
Needless to say, if we should substitute the expression
p(zi, i∆t|zi−1, (i−1)∆t) ≈ δ(zi−z̄) inside the integrals (3),
we would neglect the role of the volatility and consider

2 Let us recall that between two possible exercise times the
probability distribution is Gaussian and it is therefore sym-
metrical with respect to its mean value.

only a drift growth of the asset prices. In order to take
care of the volatility effects, a possible solution is to esti-
mate the integral of interest, i.e.

E[Oi|Si−1] =
∫ +∞

−∞
dz p(z|zi−1)Oi(ez), (17)

by inserting in equation (17) the analytical expression for
the p(z|zi−1) transition probability

p(z|zi−1) =
1√

2π∆tσ2
exp

{
− (z − zi−1 − A∆t)2

2σ2∆t

}

=
1√

2π∆tσ2
exp

{
− (z − z̄)2

2σ2∆t

}
,

together with a Taylor expansion of the kernel function
Oi(ez) .= f(z) around the expected value z̄. Hence, up to
the second order in z − z̄, the kernel function becomes

f(z) = f(z̄) + (z − z̄)f ′(z̄) +
1
2
f ′′(z̄)(z − z̄)2

+ O((z − z̄)3), (18)

which, together with the expression for p(z|zi−1), yields

E[Oi|Si−1] = f(z̄) +
σ2

2
f ′′(z̄) + . . . , (19)

since the first derivative does not give contribution to
equation (17), being the integral of an odd function over
the whole z range. The second derivative can be numeri-
cally estimated as

f ′′(z̄) =
1
δ2
σ

[f(z̄ + δσ) − 2f(z̄) + f(z̄ − δσ)], (20)

with δσ = O(σ
√

∆t), as dictated by the dynamics of
the stochastic process. It is worth noticing that each ex-
pectation value E[Oi|Si−1] can be now computed once
f(z̄) = Oi(ezi−1+A∆t) and f(z̄ ± δσ) = Oi(ezi−1+A∆t±δσ )
are known. Consequently, if we employ the deterministic
grid illustrated in Section 2.2, it is enough to put p = 3
to obtain reliable results, provided ∆t is taken sufficiently
small.

3 Numerical results and discussion

By applying the results derived in Section 2, we have at
disposal an efficient path integral algorithm both for the
calculation of transition probabilities and the evaluation
of option prices. In the present section, the application
of the method to European and American options in the
BSM model is illustrated and comparisons with the re-
sults obtained with the standard procedures known in the
literature are shown.

First, the path integral simulation of the probability
distribution of the logarithm of the stock prices, p(lnS),
as a function of the logarithm of the stock price, for a
BSM-like stochastic model, as given by equation (2), is
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Fig. 1. Simulation of the transition probability distribution
in the BSM model as a function of the logarithm of stock
prices via the two path integral methods discussed in the text:
the naive path integral implementation for 103 and 104 Monte
Carlo calls (markers) is compared with the path integral im-
plementation with importance sampling (solid line).

shown in Figure 1. The parameters used in the simulation
are: S0 = 100, X = 110, µ = 0.05, σ = 0.1, t = 0 year
and T = 1 year, with 100 time slices. As can be seen,
the expected lognormal distribution of the stock prices is
correctly reproduced by the path integral numerical sim-
ulation.

The plot shows a comparison of the calculation of
p(lnS) as obtained by means of the two path integral algo-
rithms described in Section 2.1. The markers correspond
to the naive path integral computation of the probability
distribution, without variance reduction, for 103 (upper
plot) and 104 (lower plot) MC iterations. The error bars
indicate the 1σ statistical error of the MC calculation.
The solid line is the prediction for p(lnS) as obtained
with the path integral simulation with importance sam-
pling. In such a case, only two calls are needed to cor-
rectly fit the Gaussian distribution, the numerical error
being totally negligible and the algorithm very fast, with
a typical time execution of a few seconds on a Pentiu-
mIII 500 Mhz PC. On the contrary, the first path inte-
gral implementation is much less accurate and CPU time
consuming. This is a consequence of the fact that, in the
path integral simulation with importance sampling, the
presence of a constant integration kernel squeezes to zero
the standard estimation error. The diagonalization of the
tridiagonal matrix M , which is a basic ingredient of the ef-

Table 1. Price of an European put option in the BSM model
for the parameters t = 0 year, T = 0.5 year, r = 0.1, σ = 0.4,
X = 10, as a function of different stock prices S0. 100 time
slices are used in the path integral simulation.

S0 analytical binomial GFDNM path integral

6.0 3.558 3.557 3.557 3.558

8.0 1.918 1.917 1.917 1.918

10.0 0.870 0.866 0.871 0.870

12.0 0.348 0.351 0.349 0.348

14.0 0.128 0.128 0.129 0.128

ficient path integral algorithm developed, is performed ac-
cording to the standard numerical procedure described in
reference [16], realized by means of the routine F02FAF of
the NAG program library [17], while the generation of the
Gaussian variables hi follows from the routine RNORML
of the CERN program library. It is worth noticing that,
by means of the extraction of the random variables hi, we
are creating price paths, since at each intermediate time ti
the asset price is given by

Si = exp

{
n∑

k=1

Oikhk + iA∆t

}
·

Therefore, the path integral algorithm can also be applied
to the cases in which the derivative to be valued, in the
time interval [0, T ], has additional constraints, as in the
case of interesting path-dependent options, such as barrier
options.

Once the transition probability has been computed,
the price of an option can be computed in a path integral
approach as the conditional expectation value of a given
functional of the stochastic process. For example, the
price of an European put option, which is considered in
the following, will be given by

P = e−r(T−t)

∫ +∞

−∞
dzf p(zf , T |zi, t)max[X − ezf , 0],

where r is the rik-free interest rate, so that just one-
dimensional integrals need to be evaluated. They can be
precisely evaluated with standard quadrature rules. In
our calculation, the one-dimensional integrals are per-
formed with a standard trapezoidal rule, cross-checked
with the routine of adaptive integration D01EAF from
the NAG library [17]. A sample of the results obtained for
an European put option in the BSM model is shown in Ta-
ble 1. The predictions of our approach, indicated as path
integral, are compared with results available in the litera-
ture, as quoted in reference [10]. In Table 1, the entries cor-
respond to the analytical results, the results by binomial
trees, and the results of the Green Function Deterministic
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Table 2. Price of an American put option in the BSM model
for the parameters t = 0 year, T = 0.5 year, r = 0.1, σ = 0.4,
X = 10, as a function different stock prices S0. The entries
correspond to the following methods: 1. = finite difference;
2. = binomial tree; 3. = GFDNM; 4. = path integral 1; 5. =
path integral 2, where the meaning of path integral 1 and path
integral 2 is explained in the text. The path integral 1 is per-
formed with 200 time slices and p = 13 integration points; the
path integral 2 is performed with δσ = 2σ

√
∆t for numerical

differentiation, 300 time slices and p = 3.

S0 1. 2. 3. 4. 5.

6.0 4.00 4.00 4.00 4.00 4.00

8.0 2.095 2.096 2.093 2.095 2.095

10.0 0.921 0.920 0.922 0.922 0.922

12.0 0.362 0.365 0.364 0.362 0.362

14.0 0.132 0.133 0.133 0.132 0.132

Numerical Method (GFDNM) developed in reference [10].
As can be noticed, our results are in perfect agreement
with the analytical predictions, while the differences with
the other numerical procedures are within the 1% level.
The errors in our numbers as due to numerical integra-
tion are not specified being well below the digits quoted.

To test the reliability of the sampling over the inte-
gration points discussed in Section 2.2 and of the semi-
analytical approximation for American options derived in
Section 2.3, we present results for the price of an American
put option in the BSM model in Table 2, where compar-
isons with independent results available in the literature
are also shown. In Table 2, the results denoted as path
integral 1 correspond to procedure of explicit integration
over the grid discussed in Section 2.2, while path inte-
gral 2 stands for the results obtained with the approxi-
mation of the continuum of Section 2.3. As can be seen
from Table 2, there is a good agreement of our path in-
tegral results with those known in the literature [10] and
obtained by means of the binomial tree, of the finite dif-
ference method and of the Green function deterministic
numerical method (GFDNM). It is worth noticing that
our results for the path integral algorithm 1 require only
a few seconds on a PentiumIII 500MhZ PC, while the CPU
time is negligible for the implementation denoted as path
integral 2.

4 Conclusions and prospects

In this paper we have shown how the path integral ap-
proach to stochastic processes can be successfully applied
to the problem of option pricing in financial analysis. In
particular, an efficient implementation of the path integral

method has been presented, in order to obtain fast and ac-
curate predictions for a large class of financial derivatives,
including those with path-dependent and early exercise
features. The key points of the algorithm are a careful
evaluation of the transition probability associated to the
stochastic model for the time evolution of the asset prices
and a suitable choice of the integration points needed to
evaluate the quantities of financial interest. Furthermore,
a simple and very fast procedure to value American op-
tions has been derived, by exploiting the possibility of con-
tinuous exercise up to the expiration date.

The results of the path integral algorithm have been
carefully compared with those available in the literature
for European and American options in the BSM model
and found to be in good agreement with the standard nu-
merical procedures used in finance. The method is general
and particularly efficient, and it can be easily extended to
cope with other financial derivatives (with path-dependent
features) and other models beyond the BSM dynamics.

The natural developments of the path integral ap-
proach here presented concern the application of the
method to value other kinds of quantities of financial in-
terest, for which the analytical solution is not available or
not accessible, and the extension of the method of option
pricing to more realistic model of the financial dynamics,
such as models with stochastic volatility or beyond the
BSM Gaussian limit [18–22], in order to search for a bet-
ter agreement with the real prices as observed in the real
market. A further interesting perspective would be to use
the path integral algorithm as a benchmark to train neural
networks.

These developments are by now under consideration.

We wish to thank the organizers of the conference APFA3 for
giving us the possibility of presenting our work in such a stimu-
lating environment. Useful discussions with Frederick Michael
and Adrian Dragulescu are gratefully acknowledged.
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